
June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
1

Making Programming
Synonymous with Parallel
Programming for Linear

Algebra

Robert A. van de Geijn
Department of Computer Sciences
The University of Texas at Austin

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
2

The Current Core FLAME Team
•  UT-Austin

–  Ernie Chan
–  Victor Eijkhout
–  Kazushige Goto
–  Field Van Zee
–  (this list is a bit out of date)

•  UJI-Spain
–  Enrique Quintana-Orti
–  Gregorio Quintana-Orti

•  Aachen University
–  Paolo Bientinesi

•  Others
–  See http://www.cs.utexas.edu/users/flame

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
3

The presented work is also in
collaboration with

•  Maribel Castillo
•  Francisco D. Igual
•  Rafael Mayo

(Univ. Jaume I, Spain)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
4

Funding

•  This project is primarily supported by multiple
grants from NSF

•  Unrestricted grants from NEC, Dr. Truchard
(CEO of National Instruments)

•  For a little $$$ UTK’s or DOE’s name could be here…

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
5

What is FLAME

•  A notation for representing algorithms
•  A methodology for deriving correct algorithms
•  APIs for representing algorithms in code
•  A library (libFLAME)
•  A pedagogical tool

In other words:
FLAME is a programmer’s lifestyle choice

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
6

The Need for Forward
Compatibility

•  An operation is encountered for which no
library routine exists

•  A novel architecture comes along
•  The traditional library does not deliver the

performance one wants
•  A novel data storage scheme comes along

What we need is a flexible infrastructure

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
7

Motivating scenario

•  A new architecture comes along. How much
effort does it take to port a typical library
routine to this architecture?
–  NVIDIA Tesla S870 system

•  4 NVIDIA G80 GPUs
•  6 Gbytes DDR3 memory
•  Peak 1.4 Tflops single precision
•  Available libraries: sequential CUBLAS 1.1 (later 2.0)
•  Host: Intel Xeon QuadCore E5405 (2.0 GHz)

–  Two PCIExpress Gen2 interfaces
 (peak bandwidth: 48 Gbytes/sec per interface)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
8

What do we have to do?
•  View the matrix as a collection of blocks that are

stored contiguously
–  This is (thought to be) hard

•  Program the algorithm as an algorithm-by-blocks
–  This is (thought to be) hard

•  Schedule the operations with blocks and manage the
movement of blocks between the host and the GPUs
–  This is (thought to be) hard

Welcome to programming hell

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
9

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
10

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
11

Overview

•  A bit of history
•  Programming algorithms-by-blocks is hard

–  An example: Cholesky factorization by blocks
•  Programming algorithms-by-blocks further

complicates programming (future) multicore
architectures

•  Conclusion
•  Resources

easy

simplifies

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
12

Overview

•  A bit of history
•  Programming algorithms-by-blocks is hard

–  An example: Cholesky factorization by blocks
•  Programming algorithms-by-blocks further

complicates programming (future) multicore
architectures

•  Conclusion
•  Resources

easy

simplifies

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
13

A Bit of History

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
14

Once upon a time there was
package…

•  1972: EISPACK
–  Package for the solution of the dense eigenvalue

problem
•  E.g.: A x = λ x

–  First robust software pack
•  Numerical stability, performance, and portability were a

concern
•  Consistent formatting of code

–  Coded in Algol
–  First released in 1972

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
15

Basic Linear Algebra
Subprograms (BLAS)

•  In the 1970s vector supercomputers ruled
•  Dense (and many sparse) linear algebra algorithms can be

formulated in terms of vector operations
•  By standardizing an interface to such operations, portable high

performance could be achieved
–  Vendors responsible for optimized implementations
–  Other libraries coded in terms of the BLAS

•  First proposed in 1973. Published in
C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh,
Basic Linear Algebra Subprograms for FORTRAN usage,
ACM Trans. Math. Soft., 5 (1979).

•  Later became known as the level-1 BLAS
•  Fortran77 interface

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
16

Linear Algebra Package
(LINPACK)

•  Targeted solution of linear equations
and linear least-squares

•  Coded in terms of the level-1 BLAS for
portability

•  Started in 1974. Published/released in
1977

 J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart.
LINPACK User’s Guide, SIAM, 1977

•  Fortran66 interface

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
17

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
18

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
19

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
20

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
21

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
22

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
23

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
24

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
25

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
26

LINPACK
LU factorization
with partial pivoting
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
27

LINPACK (continued)

•  Portable high performance on vector
architectures

•  Poor performance when architectures
with complex memory hierarchies
arrived in the 1980s
– O(n) operations on O(n) data means

bandwidth to main memory becomes the
limiting factor

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
28

Complex Memory Hierarchies
registers

L1 cache

L2 cache

RAM

disk

fast

slow

expensive

cheap

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
29

Evolving Towards Higher
Performance

•  Level 2 BLAS: matrix-vector operations
–  Started in 1984. Published in 1988

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An
extended set of FORTRAN Basic Linear Algebra Subprograms,
ACM Trans. Math. Soft., 14 (1988), pp. 1--17.

–  Casts computation in terms of operations like matrix-vector
multiplication and rank-1 update

–  Benefit: vector(s) can be kept in cache memory
–  Problem: O(n2) operations on O(n2) data

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
30

LAPACK
LU factorization
with partial pivoting
unblocked algorithm
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
31

LAPACK
LU factorization
with partial pivoting
unblocked algorithm
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
32

LAPACK
LU factorization
with partial pivoting
unblocked algorithm
(abbreviated)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
33

Performance (Intel Xeon 3.4GHz)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
34

Evolving Towards High
Performance

•  Level 3 BLAS: matrix-matrix operations
– Started in 1986. Published in 1990

 J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling,
A set of Level 3 Basic Linear Algebra Subprograms,
ACM Trans. Math. Soft., 16 (1990)

– Casts computation in terms of operations
like matrix-matrix multiplication

– Benefit: submatrices can be kept in cache
– O(n3) operations on O(n2) data

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
35

LAPACK
LU factorization
with partial pivoting
blocked algorithm
(abbreviated)

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
36

LAPACK
LU factorization
with partial pivoting
blocked algorithm
(abbreviated)

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
37

LAPACK
LU factorization
with partial pivoting
blocked algorithm
(abbreviated)

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
38

LAPACK
LU factorization
with partial pivoting
blocked algorithm
(abbreviated)

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
39

Performance (Intel Xeon 3.4GHz)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
40

Evolving Beyond?

•  New architectures with many “cores”
– Symmetric Multi-Processors (SMPs)
– Multicore architectures

•  Algorithms encoded in LAPACK don’t
always parallelize well

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
41

AMD Opteron 8 cores (2.4GHz)

LAPACK

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
42

Evolution vs Intelligent Design
•  LAPACK code is hard to write/read/maintain/alter

•  Formal Linear Algebra Methods Environment
(FLAME) Project
–  Based on insights from the PLAPACK project
–  Started around 2000. First official library release (libFLAME

1.0): April 1, 2007
–  Collaboration between UT Dept. of Computer Sciences,

TACC, and UJI-Spain
–  Systematic approach to deriving, presenting, and

implementing algorithms

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
43

Why the FLAME API?
•  From the “LAPACK 3.1.1. changes” log:

 replaced calls of the form

 CALL SCOPY(N, WORK, 1, TAU, 1)

 with

 CALL SCOPY(N-1, WORK, 1, TAU, 1)

 at line 694 for s/dchkhs and line 698 for c/zchkhs.
 (TAU is only of length N-1.)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
44

FLAME
LU factorization
blocked algorithm

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
45

FLAME
LU factorization
blocked algorithm

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
46

FLAME
LU factorization
blocked algorithm

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
47

FLAME
LU factorization
blocked algorithm

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
48

FLAME
LU factorization
blocked algorithm

nb

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
49

 FLA_Part_2x2(A, &ATL, &ATR,
 &ABL, &ABR, 0, 0, FLA_TL);

 while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){

 b = min(FLA_Obj_length(ABR), nb_alg);

 FLA_Repart_2x2_to_3x3
 (ATL, /**/ ATR, &A00, /**/ &A01, &A02,
 /* ************* */ /* ******************** */
 &A10, /**/ &A11, &A12,
 ABL, /**/ ABR, &A20, /**/ &A21, &A22,
 b, b, FLA_BR);
 /*---*/
 LU_unb_var5(A11);

 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
 FLA_ONE, A11, A12);

 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
 FLA_ONE, A11, A21);

 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
 FLA_MINUS_ONE, A21, A12, FLA_ONE, A22);
 /*---*/
 FLA_Cont_with_3x3_to_2x2
 (&ATL, /**/ &ATR, A00, A01, /**/ A02,
 A10, A11, /**/ A12,
 /* ************** */ /* ****************** */
 &ABL, /**/ &ABR, A20, A21, /**/ A22,
 FLA_TL);
 }

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
50

 FLA_Part_2x2(A, &ATL, &ATR,
 &ABL, &ABR, 0, 0, FLA_TL);

 while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){

 b = min(FLA_Obj_length(ABR), nb_alg);

 FLA_Repart_2x2_to_3x3
 (ATL, /**/ ATR, &A00, /**/ &A01, &A02,
 /* ************* */ /* ******************** */
 &A10, /**/ &A11, &A12,
 ABL, /**/ ABR, &A20, /**/ &A21, &A22,
 b, b, FLA_BR);
 /*---*/
 LU_unb_var5(A11);

 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
 FLA_ONE, A11, A12);

 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
 FLA_ONE, A11, A21);

 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
 FLA_MINUS_ONE, A21, A12, FLA_ONE, A22);
 /*---*/
 FLA_Cont_with_3x3_to_2x2
 (&ATL, /**/ &ATR, A00, A01, /**/ A02,
 A10, A11, /**/ A12,
 /* ************** */ /* ****************** */
 &ABL, /**/ &ABR, A20, A21, /**/ A22,
 FLA_TL);
 }

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
51

 FLA_Part_2x2(A, &ATL, &ATR,
 &ABL, &ABR, 0, 0, FLA_TL);

 while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){

 b = min(FLA_Obj_length(ABR), nb_alg);

 FLA_Repart_2x2_to_3x3
 (ATL, /**/ ATR, &A00, /**/ &A01, &A02,
 /* ************* */ /* ******************** */
 &A10, /**/ &A11, &A12,
 ABL, /**/ ABR, &A20, /**/ &A21, &A22,
 b, b, FLA_BR);
 /*---*/
 LU_unb_var5(A11);

 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
 FLA_ONE, A11, A12);

 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
 FLA_ONE, A11, A21);

 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
 FLA_MINUS_ONE, A21, A12, FLA_ONE, A22);
 /*---*/
 FLA_Cont_with_3x3_to_2x2
 (&ATL, /**/ &ATR, A00, A01, /**/ A02,
 A10, A11, /**/ A12,
 /* ************** */ /* ****************** */
 &ABL, /**/ &ABR, A20, A21, /**/ A22,
 FLA_TL);
 }

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
52

 FLA_Part_2x2(A, &ATL, &ATR,
 &ABL, &ABR, 0, 0, FLA_TL);

 while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){

 b = min(FLA_Obj_length(ABR), nb_alg);

 FLA_Repart_2x2_to_3x3
 (ATL, /**/ ATR, &A00, /**/ &A01, &A02,
 /* ************* */ /* ******************** */
 &A10, /**/ &A11, &A12,
 ABL, /**/ ABR, &A20, /**/ &A21, &A22,
 b, b, FLA_BR);
 /*---*/
 LU_unb_var5(A11);

 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
 FLA_ONE, A11, A12);

 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
 FLA_ONE, A11, A21);

 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
 FLA_MINUS_ONE, A21, A12, FLA_ONE, A22);
 /*---*/
 FLA_Cont_with_3x3_to_2x2
 (&ATL, /**/ &ATR, A00, A01, /**/ A02,
 A10, A11, /**/ A12,
 /* ************** */ /* ****************** */
 &ABL, /**/ &ABR, A20, A21, /**/ A22,
 FLA_TL);
 }

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
53

 FLA_Part_2x2(A, &ATL, &ATR,
 &ABL, &ABR, 0, 0, FLA_TL);

 while (FLA_Obj_length(ATL) < FLA_Obj_length(A)){

 b = min(FLA_Obj_length(ABR), nb_alg);

 FLA_Repart_2x2_to_3x3
 (ATL, /**/ ATR, &A00, /**/ &A01, &A02,
 /* ************* */ /* ******************** */
 &A10, /**/ &A11, &A12,
 ABL, /**/ ABR, &A20, /**/ &A21, &A22,
 b, b, FLA_BR);
 /*---*/
 LU_unb_var5(A11);

 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
 FLA_ONE, A11, A12);

 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR,
 FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
 FLA_ONE, A11, A21);

 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,
 FLA_MINUS_ONE, A21, A12, FLA_ONE, A22);
 /*---*/
 FLA_Cont_with_3x3_to_2x2
 (&ATL, /**/ &ATR, A00, A01, /**/ A02,
 A10, A11, /**/ A12,
 /* ************** */ /* ****************** */
 &ABL, /**/ &ABR, A20, A21, /**/ A22,
 FLA_TL);
 }

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
54

An algorithm for every
occasion

•  There are five loop-based algorithms for
LU factorization without pivoting
– Five unblocked
– Five blocked

•  On different architectures different
algorithm will achieve best performance

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
55

Performance (Intel Xeon 3.4GHz)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
56

AMD Opteron 8 cores (2.4GHz)

LAPACK

FLAME

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
57

Algorithms-by-Blocks

(some call these tiled algorithms)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
58

•  Distinguish
–  Blocked algorithms
–  Blocked algorithms that copy into contiguous blocks as an intermediate step
–  Algorithms-by-blocks (tiled algorithms)

•  Fred Gustavson indicates he anticipated the need for algorithms-by-
blocks in 1986.

•  First published use of storage by block: TR by Greg Henry, around
1992

•  Many papers by Fred Gustavson, Bo Kagstrom and colleagues during
late 1990s and beyond

•  Many efforts to hide nastiness:
–  Skjellum et al, Wise, …

•  Application to OOC: SOLAR library by Toledo and Gustavson and
POOCLAPACK from UT-Austin

•  Our first effort: The FLASH extension of the FLAME/C API
(FLAWN#12, 2004)

•  Very recently: PLASMA project at UTK and SuperMatrix project at UT-
Austin (2006-07)

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
59

The fundamental problem

•  People like Kazushige Goto optimize so well that it
has been hard to show the benefits of storage by
blocks.

•  This changes with the emergence of multicore
architectures(?).

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
60

Overview

•  A bit of history
•  Programming algorithms-by-blocks is hard

–  An example: Cholesky factorization by blocks
•  Programming algorithms-by-blocks further

complicates programming (future) multicore
architectures

•  Conclusion
•  Resources

easy

simplifies

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
61

Example: Cholesky
factorization

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
62

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
63

Coding the Algorithm-by-
Blocks in 15 minutes

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
64

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
65

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
66

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
67

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
68

Blocked Algorithm

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
69

Algorithm-by-Blocks

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
70

Storage-by-Blocks

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
71

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
72

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
73

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
74

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
75

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
76

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
77

But doesn’t
this just mean
that the
FLASH_Trsm
and
FLASH_Syrk
routines
are hard to
code?

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
78

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
79

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
80

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
81

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
82

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
83

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
84

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
85

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
86

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
87

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
88

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
89

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
90

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
91

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
92

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
93

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
94

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
95

Done!

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
96

Overview

•  A bit of history
•  Programming algorithms-by-blocks is hard

–  An example: Cholesky factorization by blocks
•  Programming algorithms-by-blocks further

complicates programming (future) multicore
architectures

•  Conclusion
•  Resources

easy

simplifies

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
97

Programming Dense-Matrix
on Multicore is hard easy

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
98

The basic idea

•  Algorithms-by-blocks
– Unit of data is a block
– Unit of computation is a (BLAS-like)

operation with blocks
– Apply superscalar techniques at the block

level
–  In software (runtime system) rather than

hardware

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
99

SuperMatrix

•  Cholesky Factorization
–  Iteration 1

Chol

Trsm Syrk

Gemm Trsm Syrk

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
100

SuperMatrix

•  Cholesky Factorization
–  Iteration 2

Syrk

Chol

Trsm

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
101

SuperMatrix

•  Cholesky Factorization
–  Iteration 3

Chol

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
102

Basic idea (continued)

•  Analyzer:
–  Build the DAG: Calls like
FLA_Chol(FLA_LOWER_TRIANGULAR,FLASH_MATRIX_AT(A11))

place a tasks on a queue
–  DAG: nodes are tasks, edges are dependencies.

•  At run time check if dependencies have been
met. Schedule tasks to threads.

•  Akin to Tomasulo’s algorithm and instruction-
level parallelism on blocks of computation

•  Runtime system: SuperMatrix

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
103

The FLASH code
generates the DAG!

Completely transparent
to library coder.

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
104

SuperMatrix

•  Analyzer
Chol

Trsm

Trsm

Syrk

Syrk

Chol

Gemm

…

Chol

Trsm Trsm

Gemm Syrk Syrk

Chol

…

…

Task Queue DAG of tasks

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
105

SuperMatrix

•  Dispatcher
– Use DAG to execute tasks out-of-order in

parallel
– Akin to Tomasulo’s algorithm and

instruction-level parallelism on blocks of
computation
•  SuperScalar vs. SuperMatrix

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
106

SuperMatrix

•  Dispatcher
– 4 threads
– 5 x 5 matrix
 of blocks

– 35 tasks
– 14 stages

Chol
Trsm Trsm Trsm Trsm
Syrk Syrk Gemm Gemm
Gemm Gemm Syrk

Trsm
Syrk Gemm

Gemm
Chol

Trsm Trsm
Syrk Syrk

Syrk
Gemm Gemm

Gemm Chol
Trsm Trsm

Trsm
Chol

Chol
Syrk

Syrk Syrk Gemm

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
107

Performance

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
108

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
109

Scope of Methodology

•  Implemented so far:
–  Cholesky: A few weeks (includes writing the

SuperMatrix runtime system)
–  BLAS3: 2 people, 1 weekend
–  LU-by-blocks with incremental pivoting: 1 person,

a few days
–  QR factorization-by-blocks : 1 person, a few days
–  Solution of triangular Sylvester equation: 1 person,

a few days

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
110

Overview

•  A bit of history
•  Programming algorithms-by-blocks is hard

–  An example: Cholesky factorization by blocks
•  Programming algorithms-by-blocks further

complicates programming (future) multicore
architectures

•  Conclusion
•  Resources

easy

simplifies

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
111

Conclusion

•  Is it time to stop evolving from
LINPACK?

•  Coding at a high level of abstraction
yields a more flexible design

•  The time for algorithms-by-blocks
appears to have arrived

•  Often new algorithms are required to
support algorithms by blocks

June 19, 2008 ORNL 08 www.cs.utexas.edu/users/flame/
112

Resources

•  www.cs.utexas.edu/users/flame
•  www.linearalgebrawiki.org
•  libFLAME R2.0

ONLY $8.34

04.01.08

at www.lulu.com

